After realizing that we would eventually be able to build molecular machines that could arrange atoms to form virtually any pattern that we wanted, I saw that an awful lot of consequences followed from that.
About K. Eric Drexler
Kim Eric Drexleris an American engineer best known for introducing molecular nanotechnologywas revised and published as the book Nanosystems: Molecular Machinery Manufacturing and Computation (1992), which received the Association of American Publishers award for Best Computer Science Book of 1992.
More quotes from K. Eric Drexler
Any powerful technology can be abused.
American engineer (born 1955)
In thinking about nanotechnology today, what’s most important is understanding where it leads, what nanotechnology will look like after we reach the assembler breakthrough.
American engineer (born 1955)
The really big difference is that what you make with a molecular machine can be completely precise, down to the tiniest degree of detail that can exist in the world.
American engineer (born 1955)
The other advantage is that in conventional manufacturing processes, it takes a long time for a factory to produce an amount of product equal to its own weight. With molecular machines, the time required would be something more like a minute.
American engineer (born 1955)
My greatest concern is that the emergence of this technology without the appropriate public attention and international controls could lead to an unstable arms race.
American engineer (born 1955)
But while doing that I’d been following a variety of fields in science and technology, including the work in molecular biology, genetic engineering, and so forth.
American engineer (born 1955)
I’ve encountered a lot of people who sound like critics but very few who have substantive criticisms. There is a lot of skepticism, but it seems to be more a matter of inertia than it is of people having some real reason for thinking something else.
American engineer (born 1955)
If you take all the factories in the world today, they could make all the parts necessary to build more factories like themselves. So, in a sense, we have a self-replicating industrial system today, but it would take a tremendous effort to copy what we already have.
American engineer (born 1955)
And that because the moving parts are a million times smaller than the ones we’re familiar with, they move a million times faster, just as a smaller tuning fork produces a higher pitch than a large one.
American engineer (born 1955)
After realizing that we would eventually be able to build molecular machines that could arrange atoms to form virtually any pattern that we wanted, I saw that an awful lot of consequences followed from that.
American engineer (born 1955)
You can find academic and industrial groups doing some relevant work, but there isn’t a focus on building complex molecular systems. In that respect, Japan is first, Europe is second, and we’re third.
American engineer (born 1955)
But if we can manage it so people don’t have things forced on them that they don’t want, I think there’s every reason to believe things can settle out in a situation that is recognizably better than the one we’re stuck in today.
American engineer (born 1955)
Protein engineering is a technology of molecular machines – of molecular machines that are part of replicators – and so it comes from an area that already raises some of the issues that nanotechnology will raise.
American engineer (born 1955)
It’s a lot easier to see, at least in some cases, what the long-term limits of the possible will be, because they depend on natural law. But it’s much harder to see just what path we will follow in heading toward those limits.
American engineer (born 1955)
I had been impressed by the fact that biological systems were based on molecular machines and that we were learning to design and build these sorts of things.
American engineer (born 1955)
On the molecular scale, you find it’s reasonable to have a machine that does a million steps per second, a mechanical system that works at computer speeds.
American engineer (born 1955)
Likewise nanotechnology will, once it gets under way, depend on the tools we have then and our ability to use them, and not on the steps that got us there.
American engineer (born 1955)
An international race in the relevant technologies is getting under way at this point, not necessarily with an understanding of where that race leads in the long run, but strongly motivated by the short-term payoffs.
American engineer (born 1955)
Today we have big, crude instruments guided by intelligent surgeons, and we have little, stupid molecules of drugs that get dumped into the body, diffuse around and interfere with things as best they can. At present, medicine is unable to heal anything.
American engineer (born 1955)
My work at MIT had focused on what we could build in space once we had inexpensive space transportation and industrial facilities in orbit. And this led to various sorts of work in space development.
American engineer (born 1955)
The basic parts, the start-up molecules, can be supplied in abundance and don’t have to be made by some elaborate process. That immediately makes things simpler.
American engineer (born 1955)